Stanford University
Coursera
Глобальный
Курс
Online
В любой момент
4 месяца
Стоимость курса
49 USD/мес.
Подробности и регистрация

Specialization Graphical probabilistic models

Навыки, которые вы получите:
Inference Bayesian network Belief propagation Graphical model Gibbs sampling Expectation–Maximization (EM) algorithm

Probabilistic graphical models (PGMs) are a rich framework for encoding probability distributions over complex domains: joint (multivariate) distributions over large numbers of random variables that interact with each other. These representations sit at the intersection of statistics and computer science, relying on concepts from probability theory, graph algorithms, machine learning, and more. They are the basis for the state-of-the-art methods in a wide variety of applications, such as medical diagnosis, image understanding, speech recognition, natural language processing, and many, many more. They are also a foundational tool in formulating many machine learning problems.

The Program 

  1. Probabilistic Graphical Models 1: Representation.
  2. Probabilistic Graphical Models 2: Inference.
  3. Probabilistic Graphical Models 3: Learning.
Нам нужен ваш фидбек!
Честный и беспристрастный