Навыки, которые вы получите:
Data visualization
Numpy
CSV
Pandas
Machine learning
Data science
Matplotlib
Python
Machine Learning and Data Science for programming beginners using python with scikit-learn, SciPy, Matplotlib & Pandas.
The Program
- Introduction to Machine Learning.
- System and Environment Preparation.
- Learn Basics of Python.
- Learn Basics of NumPy.
- Learn Basics of Matplotlib.
- Learn Basics of Pandas.
- Understanding the CSV Data File.
- Load and Read CSV data file using Python Standard Library.
- Load and Read CSV Data File Using NumPy.
- Load and Read CSV Data File Using Pandas.
- Dataset Summary.
- Dataset Visualization.
- Multivariate Dataset Visualization Data Preparation (Pre-Processing).
- Data Preparation — Standardizing Data.
- Feature Selection.
- Refresher Session — The Mechanism of Re-sampling, Training and Testing.
- Algorithm Evaluation Techniques.
- Algorithm Evaluation Metrics.
- Classification Algorithm Spot Check.
- Regression Algorithm Spot Check.
- Compare Algorithms.
- Pipelines Data Preparation and Data Modelling.
- Performance Improvement Ensembles.
- Performance Improvement Parameter Tuning.
- Export, Save and Load Machine Learning Models.
- Finalizing a Model.
- Quick Session Imbalanced Data Set — Issue Overview and Steps.
- Iris Dataset Finalizing Multi-Class Dataset.
- Finalizing a Regression Model — The Boston Housing Price Dataset.
- Real-Time Predictions.
- Source Code.